1 N ov 2 00 2 WEAKLY NONLOCAL CONTINUUM PHYSICS - THE GINZBURG - LANDAU EQUATION

نویسنده

  • PETER VÁN
چکیده

In this paper we investigate and refine Liu's procedure for the exploitation of the entropy inequality. We give a new-old proof of Liu's theorem. We shortly compare the Coleman-Noll and Liu techniques and call the attention to the proper application of the constraints in the procedure. As an example the Ginzburg-Landau equation and some variants are derived.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

1 8 O ct 2 00 2 WEAKLY NONLOCAL CONTINUUM PHYSICS - THE GINZBURG - LANDAU EQUATION

In this paper we investigate and refine Liu's procedure for the exploitation of the entropy inequality. We give a new-old proof of Liu's theorem. We shortly compare the Coleman-Noll and Liu techniques and call the attention to the proper application of the constraints in the procedure. As an example the Ginzburg-Landau equation and some variants are derived.

متن کامل

Weakly Nonlocal Irreversible Thermodynamics- the Ginzburg-landau Equation

The variational approach to weakly nonlocal thermodynamic theories is critically revisited in the light of modern nonequilibrium thermody-namics. The example of Ginzburg-Landau equation is investigated in detail.

متن کامل

Some new exact traveling wave solutions one dimensional modified complex Ginzburg- Landau equation

‎In this paper‎, ‎we obtain exact solutions involving parameters of some nonlinear PDEs in mathmatical physics; namely the one-‎dimensional modified complex Ginzburg-Landau equation by using the $ (G'/G) $ expansion method‎, homogeneous balance method, extended F-expansion method‎. ‎By ‎using homogeneous balance principle and the extended F-expansion, more periodic wave solutions expressed by j...

متن کامل

Exact solutions of the 2D Ginzburg-Landau equation by the first integral method

The first integral method is an efficient method for obtaining exact solutions of some nonlinear partial differential equations. This method can be applied to non integrable equations as well as to integrable ones. In this paper, the first integral method is used to construct exact solutions of the 2D Ginzburg-Landau equation.

متن کامل

Weakly Nonlocal Irreversible Thermodynamics

Weakly nonlocal thermodynamic theories are critically revisited. The irreversible thermodynamic theory of nonlocal phenomena is given, based on a modified form of the entropy current. Several classical equations are derived , including Guyer-Krumhansl, Ginzburg-Landau and Cahn-Hilliard type equations.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002